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Préeis

OBJECTs

. To survey, in as nontechnical a manner as possible; the
extensive literature on diseriminatory analysis and re-
lated topiecs,

SUMMARY's

The literature on discriminatory analysis and related
topics is revieweds A bibliography of over 250 refer-
ences is appended, Mathematical research projects are
suggested in relation to the medical and psychologicel
problems of Air Force selection and classification pro-
grams.




CHAPTER I

Introduction.

The purpose of the present monograph 1s to survey, in as
nontechnical a manner as possible, the extensive literature
on discriminatory analysis and related topics which is listed
in the bibliography (pages 89 - 115), It seems desirable to
iﬂdicate briefly the point of view from which the topics were
selected and discussed.

- In a narrow sense discrimlinatory analysis may be identi-
fied with the finite multiple classification problem: an
individual ‘I. is' known to belong to just one of k speci~
fied pategoriés or populations, and must be classifled into
one Q? these populations on the basis of whatever evidence is
available about I and about the populations. The classifi-
cation problem becomes statistical when we further specify
that the available evidence about I consists of observed
values of.certain random variables, these random variables
having different probability distributions in the different
populations.

. It 414 not seem reasonable, however, to place so strict
an interpretation on the subject in preparing the present
survey. The techniques employed in discriminatory analysis

are intimately related to certain techniques, especially the




coefficient'of racial likeness and the generalized distance,
which were introduced earlier, and it was not possible to
convey an adequate idea of the development of discriminatory
techniques without first discussing its predecessors. Wé
have therefore devoted Chapter II to the coefficient of
racial likeness and Chapter III to the generalized distance.
Extensive bibliographal listings are also given for these
topics.

Until recently discriminatory analysis has been es-
sentially no more than the application of the linear dis-
criminant function. Correspondingly, & central place has
been given to this topic. The discriminant function is
introduced in Chapter V; in Chapter VI there is presented in
tabular form a collection of its applicators to many scien-
tific fields; and in Chapter VII some of its modifications
and extensions are discussed.

The entire topic of multivariate analysis may be regard-
ed as an extension of the discriminant function, but it did |
not seem reasonable to include in the present work a dis-
cussion of multivariate analysis. We have restricted our-
.8elves to a brief indication of the.connections between the
two topics, given mostly in Chapters IV and VII.
| In his invited address at the meeting of the Institute
of lMathematical Statistics in Berkeley, California, June 16,
1949, Professor M. A. Girshick pointed out that the develop-
ment of discriminatory analysis reflects the same broad phases

as does the general history of statistical inference. We may




distinguish a Pearsonian stage, connected with the coef-
ficient of racial likeness, followed by a Fisherian stage,
‘connected with the linear discriminant function. Girshick
further notes a ﬁeyman-Pearson stage and a contemporary
Waldian stage, which are discussed here in Chapters VIII
and IX, respectively. These stages are marked by,the intro-
duction of the notiohs of probability qf misclassification,
and of risk.

As is indicated by the fact that the vibllography con-
tains over 250 1listings, it was impossible to give a thorough
discussion to all of the literature. In making the selection
of the papers to be presented at length, two principles have
been followed. We have tried to present in‘some detail the
. 1deas which marked important conceﬁtual advances, rather than
those which correspond to technical elaborations. And, other
things being equal, we have preferred the simpler topics to
the more complicated ones. Thils preference was of course
dictated by the desire to‘have the monograph accessible to
persons of limited training in mathematical statistics.

The bibliography was compiled by scanning recent volumes
of the main statistical journals, by consulting bibliographic
reference works such as Mathematical Reviews, Educational
Index, Statistical Methodology Index, Psychological Abstracts,
and Biological Abstracts, and by tracing back the bibliograph-
ic references in the papers themselves. Much of this work
was done by the assistants, and I have particularly to thank

Mr. Charles Kraft for doing most of the final checking for




accuracy. We tried to make the“biblioéraphy'as complete .as
possible,,and_woula_appreciateshaving,omissions brought to .
our attention. Réferences in the text to the bibliography
are made by giving author's name and date. A 1list of periodi-
cals is given at the end of the report.

._ | In conclusion I should like to thank my friends and
colleagues, Dr. Evelyn Fix‘and,Professor\E. L. Lehmenn, who-
have gone through much §f the manuscript and have made many
constructive changes., Our thanks are also due to the vari-
ous scholars who,have made available to us their unpublished
manuscripts; in particuiar we thank T. W. Anderéon, Ze Wo
Birnbaum, G. W. Brown, D. G. Chapman. C. L. Chiang, and M.

“A. Girshick.




CHAPTER II

The Coefficient of Racial Likeness.

Karl Pearson and hls colleagues at Univeréity College,
London, were deepiy interested in the possibility that human
crania might be used in the study of anthropology and evo-
lution. They formed considerable collections of skulls, which
were carefully measured and studied. Frequently the samples
were quite small, so that it frequently became desirable to
pool closely related samples. Hence there was need for a
test of the significance of observed differences between the
samples, which could be applied to determine whether such
pooling would be appropriate. There were available tests for
the significance of difference of two normal samples, in which
each observation consisted of a single meésurement, but in
craniometric work 1t was usual to measure as many as 50 quanti-
ties on each skull. As Pearson saw, there was need for a
test which would compensate for the smallness of the samples
by the large number of quantities which might be measured on
each individual, |

As Pearson wrote later, he tackled this problem in 1919,
The solution which he obtained was published in 1921, in a
paper written by Miss M. L. Tildesley. Miss Tildesley wanted

to know whether she should combine two small samples of




Burmese skulls so that the resulting larger sample could be
used to give a more reliable estimate of Burmese cranial
characteristics. To answer this question, she used the coef-
ficlent of racial likeness (which we shall hereafter denote
by CRL). The CRL was given a number of slightly differing
definitions but in a simple situation it might be defined as
follows.

Suppose we have two samples, say a samplé Sl of n,
individuals (skulls), and a sample S, of n, 1ndividuals.
Suppose that on each individual of each sample we measure p
traits. Denote the value of the ith trait measured on the

jth individual of the ath sample by x From these measure-

alj’®
ments we compute for each sample and each trailt the mean and

standard deviation:

1) x, =l Sy 1 & = 2
E R . S = —— - 4
a n, 5{; aij ’ “ai ng EE; (Xaij Xq)

i=1,2,¢0,p; a=1,2 .
Pearson then would define the CRL to be the quantity

~ _ .2
p (x5 = Xp4)

1
(2) D2, | 2 2 -1

1= 11 . o4

+ £

o W2

The motivation of Pearson's definition is approximately
as follows., If the two samples do come from the same popu-
letion, the expected value of ili - §2i is 0; and in any

case an estimate of the variance of ili - EEi is given by
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nl n2

Since biologlcal measurements are often approxi-

mately normally distributed, and since arithmetic means tend
to be nearly normal even if the averaged quantities are not

normal, we mey think of
11 " Fay

- > > ’ i=l’ 2,"‘,p
f 511 %21

___._..}.a__

o oo

as being, approximately, normal rendom variables of unit vari-

ance, whose expected values are O 1if the two samples come
from the same population, but whose expectations would usually
differ from O otherwise. Now if the p random variables
were‘independent, a reasonable test of the hypothesis that

- the samples come from the same pOpulationlwould be provided

- by examining the sum of their squares:

P OE, -%)°
(3) ZE: ;1 ii
1=l 874 + 854
o R

The quantity (3) would have approximately a chi-sqiuare dis-
tribution of p degrees of freedom, central if the hypothesis
were true, non-central otherwise. From the point of view of
modern theo?y, the use of the statistic (3) can be justified
by, for example, the likelihood ratio principle. And since
the CRL is a linear function of (3) the use of the CRL as a
'statistic for testing the hypothesis of homogeneity still

seems reasonable, provided that the various assumptions men-

tioned above hold.




Pearson did not suggest that the chi-square distribution
be used with the CRL, however, Fof most of the applications
in craniometry, p would be large enough so that the chl-
square distribution could be replaced by the normdl with
negligiblé loss of accuracy. Pearson gave the first two
moments of the CRL (assuming the hypothesis true) and sug-
gested that these be used in referring a cbmputed CRL to a
normal teble. (It may be noted that the formula for the
second moment given in Miss Tildesley's paper is wrong by a
factor of lj. This mistake was repeated in a number of sub-
sequent papers, and only corrected in 1926,)

Pearson was well aware that the theoretical justifi-
cation for his cbefficient rested on the assumption of the
independence of the traits measured. The correlation of
cranial traits had been the subject of much study by his.
school, Miss Tildesley wrote, "... we do know quite enough
to assert that the correlation is never very high between
cranial characters which do not have any portion in common,
and whHich are not right and left measurements of homologous
characters. It is indeed often wholly negligible." As
Pearson pointed out (1926), it is easy in theory to allow
for dependence of the traits, but when p 1s as large as
20 the resulting computations are overwhelming. H& recom-
mended that great attention be paid to the selection of traits
little correlated with each other within the sampled popu-

lations.

From the point of view of the development of discriminatory
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analysig it is of gfeat interest to observe that from its in-
ception, the CRL was employed for two rather different pur-

poses. Properly speaking, the CRL is designed as a test

statistic, large wvalues of which are supposed to reflect high
improbability that the two samples are drawn from the same
population. In applying the test, one selects a critical
value, say c¢, and rejects the hypothesis of homogeneity if
the CRL exceeds c¢. The value of ¢ 1is selected according
to the level of significance which we desire our test to
have; by increasing the value of ¢ we decrease the proba-.
bility of rejecting the hypothesis if it 1is true.

Now suppose 170,'n1, and Trz; are three populations from
each of which we have a sample, say So, Sys and 82 re-
spectively. Suppose we compute the CRL between Sq and S1
and find it to have the value Cl’ and correspondingly find
the CRL between SO and 52 to have the value C2.
further thst C1 > C2. We could then select a critical value

Suppose

¢ which lies between the two CRL's: Cl > ¢ >vc2, At the
significance level corresponding to ¢, we should accept the
hypothesis that 'ﬂb and 'ﬂ; are ldenticel and reject the hy-
pothesis that TTO and TTi are ldentical. An examination of
this situation mekes it easy to understand why there is a
temptation to say, in such cases, that " TTO is nearer to

172 than it is to ﬂ;". If we succumb to this temptation,

we shall be using the CRL not as a test statistic, but as a

measure of soms (as yet.undefined) concept of relative degree



of resemblance or divergence in the totality of populations

under study,.

Tt should be clear that the temptation to use a test sta-
tistic as a metric is not confined to the CRL. If we have any
statistic for testing whether two samples are drawn from the
same population, the statistic being so constructed that large
values are indicative of difference in the populations sampled,
then it is rather natural to interpret larger significant |
values as indicatlive of greater differences,

.For example, Miss Tildesley computes the CRL between
French snd BEnglish skulls (the value being 2L.5), and also
between Egyptian and Negro skulls (the value being 27.3), and
then states "French and English are shown to be almost as far
apart raclally as Egyptiens and Negroes." Both values of CRL
are highly significant.

In the years following 1921, Pearson's school carried
out many craniometric researches in which the CRL was the
principle statistical tool. The chief contrlibutor to this
work was G. M. Morant., Morant commented in 1923 on the question
of the use of the CRL as a measure of degree of resemblance,
in the following terms (Morant 1923, p. 205):

®the value of [(2)] computed from a number of mean

characters of two races is the Ccefficient of Racial

Likeness between them and it 1s thus a measure of

the probability of the two belng random samples

from the same population., It 1s not a true measure

of absolute divergence, and must not for a moment

10



be considered as such, but nevertheless we shall

speak of it, for convenience, as if 1t were an ab-

solute measure of raclal affinity.®
In spite of this warning, however, Morant and others continued
to use the CRL as a metric. The reason for this inconslstency
was doubtless the fact that the craniometrists had need for
such a metric, and the CRL was the only tool avallable %o
them for such a purpose.

Morant was by no means an uncritical user of Pearson's
CRL. In 192]; he had this to say on the subject (Morant 192l ,
p. 12):

"given two random samples each of ten individuals

drawn from the same homogeneous population, the Coef-

ficient of Racial Likeness deduced from the mean

characters of the two samples will not differ sig-

nificantly from zero, and if twb samples sach of a

hundred individuals are drawn from the same popu=-

lation then their Coefficient will also be of the

same order. DBut if two random samples each of ten

individuals are drawn from two different populations

and then two samples each of a hundred individuals

are drawn from the same differing populations 1t

will be found that the Coefficient between the first

palr will be very distinctly less than that between

the two samples of a hundred individuals each ... .

It is for this reason that Coefficients of Racial

Likeness may not be compared directly ..."

11
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The reader may have been wondering what the CRL, whether
viewéd as a test or as a measure, has to do with discrimina-
tory analysis. There 1s an obvious way in which a measure of
divergence can be used for discrimination purposes. If we
can measure the divergence of an individual (or a sample)
from each of several populations, to,oné of which it is as~
sumed that the individual (or sample) belongs, then it seems
reasonable to assign the individual (sample) to that popu-
lation from which the measured divergence 1s least. In a
somewhat similar way a test of significance of difference can
te used as a discriminator: we assign the individual to that
population from which it is significantly different at the
largest level of significance,

In 1926 Morant had occasion to deal with a discrimi-
nation question in craniometry (Morant 1926b). An ancient
skull was discovered in 1888 in the commune of Chancelade in
France. It was examined by an anatomist, Dr. Testut, who
wrote, "Parmi les races actuelles, celle qui me parait présenter
la~plus grande analogié}i?homme de Chancelade est celle des
Esquimaux." Most anthropologists agreed with Testut's con-
clusion, but some did not. In 192y Sir Arthur Kelth wrote,
", ..the Chancelade skull, while possesging a few superficial
resemblandes to Eskimo skulls, is in its essential character

just as European as the people of England and France today,"
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(quotations from Morant's paper). We have here a clear problem

of discrimination and Morant approached”this problem biometri-

cally. .

Before seeing‘what Morant did, let us examine the CRL
more closely as a possible tool for d18criMination. In practice,
the CRL is usually employed‘in a form:SOméwhat different from

(2)s Let da denote the staendard deviation of the ith trait

i
in the ath population, - It is usually assumed that Gii = Géi;
in fact, in craniometry it is customary to-replace both Gy

and. 0,, by a value 6, obtained from a large standard sample,
it being felt that the variation in standard d eviation from one
race to another is of less importance than the sampling error

of the usual small samples, With the assumption 0., =0 ;=0 ,.

11 "2 i
(2) simplifies to '

P - o 2
1 o X114 = %04
(L) p ZE: n, + n, 6. -1
i=1 1 2 1

Now if we wish to compare a single individual with each of
several different races, we would compute (lp) between a first
semple, consisting of the single individual, and a second

sample, consisting in turn of each of the races. Thus n

would be 1, X, = would be the value, x  , of the 1th tr;it
for the individual, and (l) would become
(5) ;L '“"I:%"i' (f‘l“’*“a’”““'-‘ XZi) -1

1=1 "2 1

Finally, suppose that we have a large sample from the race;-

13
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ns _ )
then =S approximates to 1 and Xoy will tend in proba-
nz‘*' 1

billity to the population mean value, say gi' Thus, the CRL
gimplifies to
2

1 S (X - 5y
(6) ;Z(———-é-—-—- - 1.

T i=l 1
We might then reasonably compute the value of (6), using the
mean values .Ei for each race in turn, and assign the indi-
vidual to that race for which (6) is smallest.

Now let us consider what Morant actually dld. To compare

the Chancelade skull with male Eskimo skulls, he obtained the

values of .?i and 6, from large samples of modern male

i
Eskimo skulls, and computed, for p = 55 traits, the values

of the quentities

e R N
(D) 6, ’

If the Chancelade skull were Eskimo, we should have here ob-
served values of 55 (supposedly independent) normal deviates,
and might use these values to test the hypothesis that the
Chencelade skull is Eskimo. The corresponding test might be
made to determine whether the Chancelade skull resembles, say,

modern English skulls. Morant actually makes two sets of such

 tests--by computing both the sample mean and standard deviation

of the quantities (7) and comparing them with their "theo-
retical values. Morant's conclusion was: "...from the

evidence afforded by the skull and mandible, we may accept as




a reasonable working hypothesis the statement that the
Chancelade individual was distinctly closer to the Eskino than
to the modern English."

Since the standard deviation of the quantities (7) is
‘s function of the form (6) assumed by the CRL in this situ-
ation, it turns out that one of the two tests made by Morant
amounts to the use of the CRL as a discriminator. However,
it is rather curious that the CRL is not explicitly mention-
ed by Morant; in fact, this is about the only craniometric
work which Morant did in this period without mentioning the
CRL. It is a rather curious historical fact that the con-
nectioh of the CRL with discrimination did not come in the
direct way just discussed, but only in the roundabout fashion
outlined in the next chapters.

In 1926 Pearson published the first considerable theo-
retical work on the CRL. In this paper, Pearson deals with
the independence assumption underlying his coefficient. In
fact,; he suggests an alternative form of the coefficient,
which is suitable if the traits are not nearly independent,
and if there are only a few of them. Let Tost denote the

sample correlation between the sth and t-th traits in Sy

Just as it is conﬁenient to assume 6 =0 =06 it 1s
| 11 < %1 T %
convenient to assume »r = p = r

1st 2st st Lot
(8) 7y = i - S * S U

Ill + n2 61

15
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out in 192);, that arises when one wishes to use the CRL as a

fLet ’R;fdenote the correlation matrix of Y1s Y25 Jpt.

R = 1l ryo sce rlp‘
T 1 ‘bve e T
el .~ "2p
(9)
rpl Pp2 eca 1l

and let Rgy denote the cofactor of R at the sth row and

t-th column. Then it is known that

. v 1 PP :

(10) | 'E'I' Z: Z’\ Rgt Vg Vg
s=1 t=1

will, if the samples are drawn from the same population and
the matrix R 1s exact, have a chi-sqﬁare distribution with
p degrees of freedom. The quantity (10) may be considered
to be a generalization of the original CRL (l;), to which it
reduces if the traits are independent,

Pearson points out the great labor involved in comput-

: ingq(lo) when p 1is as large as, say, 20. He concludes that

'for the statistician, as for the statesman, the ideally best

is not always the wisest course.-

In 1928 Morant returned to the difficulty he had pointed

- measure of dispersion in cases in which the sample sizes differ

widely. He suggested a corrective factor toc be applied to re-
duce the CRL to a standard sample size, Morant!s criticism

and suggested correction are very similar to those offered at



about the same time by P. C. Mahalanobis, and we shall defer
discussion till the next section. Finally in 1928 Pearson
gave way before the arguments of Morant and Mahaslanobis (K.
Pearson 1928b), and sanctioned a corrective factor which in
essence reduces the CRL to the D2 statistic discussed 1in the
- next section.

After 1928 numerous papers applying the CRL to cranio=-
"metric work continued to appear in Biometrika. Further theo-
retical work shifted into other lines, however. The D2
statistic, introduced originally as a modification of the
CRL, was studied extensively by the Indian school, with a
steady development of the relevent distribution theory cul-
minating in a paper by Bose and Roy in 1938, And in the Wesﬁ,
work of Fisher and Hotelling on different but related problems
prepared the way for the introduction of the linear dis~
criminant function in 1935. In an important paper of Fisher
in 1938, these various lines of development were brought to~
gether., We shall trace the important features of these re-
searches in the next three chapters.

In the bibliography there is an extensive listing of
papers pertaining to the CRL. Among these are Batrawi and
Morant (19),7), von Bonin (1931a, 1931b, 1936), von Bonin and
Morant (1938), Cleaver (1937), Collett (1933), Dingwall and
Yogng (1933), Goodman and Morant (1940), Harrower (1928),
‘Hasluck and Morant (1929), Hooke (1926), Hooke and Morant

(1926), Kitson (1931), Kitson and Morant (1933), Layérd and
" Young (1935), Little (1943), Martin (1936), Morant (1923,

17
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192k, 1925, 1926a, 1926c, 19272, 1927b, 1928a, 1928b, 1929a,
1929b, 1931, 1935, 1936a, 1936b, 1937, 1939a, 1939b), K.
Pearson (1926, 1928a, 1928b), Reid and Morant (1928), Risdon

 (1939)s Stoessiger (1927), Stoessiger and Morant (1932),
?Tildesley.(l921), Woo (1930); Woo and Morant (1932), and

Young (1931). The bulk of these papers contain only routine
applications of the CRL to cranlology, and are devoid of theo=
fetical Interest. Of greater interest are certaln papers

which approach the CRL in a critical spirit. We have alréady

- mentioned some of the comments of Morant, and those of

Mahalanobis will be further discussed in the next chapter,
In this regard one may mentlon Pearl and Miner (1935),
Fisher (1936a), and Seltzer (1937),

- Certain other writers proposed coefficients similar to
the CRL, independently of and sometimes earlier than Pearson.
Joyce (1912} credits to H. E. Soper a "differential index"
which resembles the CRL except that the terms are not squared;
this reduces the statistical efficiency. A still more primi=
tive coefficient is that of Aebly (1926}, in which differw
ences &are nbt compared with thelr variabilities, but are

summed directly.




CHAPTER III

The Generalized Distance.
[

In 1923-1925, P. C. Mahalanobls was engaged in an anthro=

i pometric study of the Anglo~Indians of Calcutta, and of theilr

. relations to other racial groups. He at first employed the
:;then recently devised CRL as a principal statistical tool, but
1(as had been Morant) was dlsturbed by the influence.of semple
size on the CRL when it was used as a measure of the diver~ |
., gence of two pdpulétions. On what appear to have been rathef

intultive grounds, Mahalanobls decided to drop the coefficient

i M -
—=—>=— and obtained in this way a statistic
n. + n
1 2
2 2
2 o= X
R N R (3‘_1_1__25_2_:_)
Pia \ g

This statistic, called at first the "caste-distaﬁceK and later
the “generalized distance", was used by Mahalanobis in the
presidential address delivered to the AnthPOpblogical Sectién
of the Indian Science Congress in 1925 (Mahalanobis 1927),
which was published in 1929,

The contrast between the CRL and D2 is made clear if we

consider what héppens when the sample sizes nl’ end n, are

increased., If there is in fact no difference between the

19
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populations with regard to the means of the traits, the distri-
n. n
1 72

bution of CRL will remain unchanged; the increase of
n1+ n2

will serve preclsely to ccunterbalance the tendency of

X to approach 0. On the other hand, if there is an

11 " Xz
actual difference in the population means, say J} + 0, then
(ili - 321)2 will tend in probability to the positive quanti-
ty J i as the sample sizes are increased. Consequently the
CRL will tend in probability to‘ o0o. It is thus, as Morant

saw in 192&, unreasonable to use the CRL as a measure of diver-
gence unless the sample sizes are always the same., This diffi-
e, 1f §,, and £ s

denote the population means, then as the sample sizes are in-

culty does not arise in the case of D

creased, D2 tends in probability to

p

2 - 2

(2) A "‘515 5 (En _ '521) .
i=1 i

We may therefore view the sample quantity D2 a8 a point esti-
mate of the corresponding population quantity AZ s and
state that the estimate 1s consistent (i.e., tends in proba-
bility to the quantity being estimated as the sample sizes are
increased),

Mahalanobis has stated (1919, p. 237) that he presented
the foregoing argument to Karl Pearson in 1927, and that
Pearson refused to admit its validity. In any case, Mahalanobis

began to use his Dzvstatistic, and in 1928 Morsnt published a

very simllar angument, together with numerical data showing




the tendency of the CRL to increase with the sample: size.
Morant suggested t hat CRL's based on wldely different sample
sizes could be made comparable by corrective factors. Pearson
in the same year endorsed Morant's suggestion, whose effect
is in practice to make the CRL very similar to D2.

From 1930 to 1938 the Indian school devoted much effort
to developing the distribution theory of the D2 statistic.

In reviewing the history of this research, 1t Wili'be con-
venient to introduce some terminologyvto describe the various
'assumptions under which one may study the distribution of D2
and related statistics.

The reader may have been disturbed by the way in which
Pearson and his followers employ for the standard deviations
o, quantities obtained from extraneous sources, and ignore
the sampling variability of these estimates. Practically,
if the samples are large, the variability of.sample estimates
of the variasnce will not make a major contribution to the
distribution of the CRL or of D2. In a sense, the values of
the variances are of secondary importance to the values of
the mean differences, But as the theory of statistics de~
velops refinement; and its methods are applied to smaller
samples, i1t becomes desirable to take into account the sampl-

ing fluctuation of ¢ It was the great contribution of

10
Student (1908) to recognize that the ratio of the mean devi-
ation of a normal sample to the estimate of the standard

deviation based on the sample, did not have a normal distri-

bution. It seems reasonable to distinguish, therefore, be-

21
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pendent. As with the CRL, the D

‘tween the "Claséical" and "Studentized" versions of the

distribution theory problem. If it 1 considered that the

quantities 6& and ry which are employed represent true

t

population values, we shall say that the problem is being

treated in its "classical' form; while if account is taken
of the fact that thesé quantities are estimated from the
samples, we shall refer to the problem as "Studentized."

The problem may be further characterized by either mak~
ing or not making the assumption that the traits are inde-
2 statistic was at first con-
sidered only in the case that the quantities Eii - Eéi ;
i=1, 2,***, p» are independently distributed. By 1935,
however, the obvious extension Involving the addition of
corfelational terms had been made: the corresponding ex-
tension for the CRL was made by Pearson in 1926. The de-
pendent version of D2, using the notation of (10), Chapter

II, is given by

P p - - — -
(3) N *1s =~ ®os X1y = For
3 IR | Z) Z Rst 6 P

s=]1 t=1 8 t

A third categorization of the distribution problem

follows by observing that the distribution of‘D2

may be
sought either in case the populations sampled are the same
(which we shali refer to as the central case), or in case

the populations differ for at least one trait (which we shall

refer to as the noncentral case), In summary, we may seek




the distribution of D° (or of the CRL) for the classical or
Studentized, for the independent or dependent, and for the
central or noncentral, cases. There are thus in total eight
possible situations.

In the terminology Jjust introduced, we may say that
Pearson in 1921 gave an aspproximate distribution for the
central, classical, independent CRL, and that in 1926 he
gave the exact distribution for the central and classical
CRL, which turned out to be thé same (chi-square) regardless
of independence.

In the same terminology, P. C. Mahalanobis considered
the independent, classical case, both central and noncentral,
in 1930. This was the first considerable paper on the theory
of the D2 statistic. By a method thought to be approximate
(series expansion), Mahalanobis obtained the first four moments

of D2. From these, and from large scale sampling experiments,

he was able to state: "We conclude therefore that the distri-
bution of D2 will conform generally to Type I of the Pearson-
ian family, except in the case of two groups (or samples)
taken from the same population, when the distribution will
pass into the Type IJII curve."

| In the mid-1930's, the distribution problem of D was
attacked by R. C. Bose, In 1935 Mahalanobis had published

2

the dependent form of D° mentioned above, and Bose first

considered the classical DZ, in both the independent and de-

pendent cases, both centrally and noncentrally. He was able
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to obtain the exact distribution, and hence the moments, It
was found thaet the results of Mahalanobis were‘éxact, and were
correct without the independence assumption.

R. C. Bose continued to work on the problem, trying to
remove fhe assumption that the covariance matrix is known.
In 1936 Mahalanobis defined explicitly the “Studéﬁtized" form
of‘Dz, and reported that Bose had found the first féur moments
of D2 in the noncentral Studentized case., Finally, in January,
1938, Bose and S;‘Ng»Roy were able to report to the first ses~
sion of the Indiaﬁ Statisticai Congress that they had succeed-
ed in solving the complete problemf they had found the distri-
bution 6f D2 in the Studentized case, whether central 6f non=
central, whether independent or correlated. |

The chaifman of the meeting was'R. A. Fis£ér, and ai the
end of fhe paper of Bose and Roy, Fishér rose to point out |
that he had given (however,rin connection with a quite differ-
ent statistical problem) the distribution which they had ob-‘
tained;*in a paper published in 1928, It was alsd polinted out
that Hotelling in 1921 had obtained, also in anothef connection,
the Bose-Roy distribution for the central Studentized case, It
is reported that Fisher remarked "that he, and Professors
Hotellinz and Mahalancbis had been unwltbingly treading the

same ground. He was glad to avail himself of the'present op-

- portunity to clear up this point." In the same year (1938)

Fisher published in his journal a paper pointing out the close

connection between several independent lines of development,




The Indian school has continued to develop the theory of
Dz, usually without reference to paraliel developments in the
West. Roy and Bose (19,,0) have modified the D? statistic to
permit the covariance estimates to be based on several samples
while the mean differences are based on two. Bhattacharyya

2 moments when the

and Nerayan (1941) have investigated the D
population variances are unequale. A. Bhattacharyya (19}6) has
extended'the D2 statistic to the measurement of divergence be-
tween multinomial distributions. P. K. Bose (19&7&, 19u7b,
19,9) has developed recursion formulase with the aid of which

he has tabled percentage polnts of the centrai and noncentral

D2 distribution,; in both the classical and Studentized cases.

Bose 1s apparently unaware of the relation of his distri-
butions to the chi-square and F distributions, and as a re=
sult seems 1n some cases to have duplicated existing tables.

The D2

statistic has recently been used as a major tool
in a very extensive anthropological investigation (Mshalanobis,
Ma jumdar, and Reo), which ‘comprises Parts 2 and 3 of Volume 9
of Sa@nkhya. The paper has several appendices in which various

theoretical points are discussed.
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CHAPTER IV

Beginnings of Multivariate Analysis.

The coefficient of racial likeness and the generalized
distance share a féature which serves to distinguish them from
much of the preceding work in statlstics. Both of these tech~
nigues represent attempts to deal with inference problems in
which the data consists of several correlated (normal) measure-
ments, say Xl’ XZ,";, Xp, made on each individual or experi-
ment considered. These statistics are therefore precursors
of the theory of multivariate (normal) analysis, a promihent
example of whiéh is the linear discriminant function. Before
discussing the linear discriminant function it will be useful
to describe briefly some developments of multivariate analysis,
most of which occurred between 1928 and 1938. |

Beginning with the publication of Student'!s revolution-
aery paper in 1908, the English school of statisticians have
devoted much effort to obtalning analytical expressions_for
the distributions of commonly used statistics based on normal
samples. Previously, in 1900, Karl Pearson had obtained the
chi~-square distribution as an approximate distribution for a
test of goodness of fit, In Student!'s 1908 paper, the chi-
Square distribution was offered as the distribution of the

sample variance of a normal sample, and a distribution
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equivalent to what isg now known as the Student t-distribution
was given for the ratio of sample mean to sample standard devi-
ation. The next major advance occurred in 1915, when R. A
Fisher, in finding the distribution of the correlation coef=-
ficient computed from a bivariate normal sample, introduced
his method of geometrical asrgument in Euclldean hyperspaqe.
However much this method may fall short of present-day re-
quirements for rigor, in the hands of Fisher it was to pro=-
duce in the next fifteen years revolutionary results. In
1921 Fisher applied his geometrical argument to find the
distribution of the intraclass correlation coefficient. The
digtribution was labellsd by Fisher with the letter 1z, a
symbol now famous in statistics. It subsequently developed
that the z-distribution had applications far more important
than those to the intraclass correlation coefficient; in

fact, it turned out to be the general distribution needed to

establigh the level of significance of all analysis of vari-

ance tests. In a transformed version 1t is now widely known
as the F-distrlbution, having been so named by Snedecor in.
Pisher!'s honor. In a serles of papers from 1921, Fisher and
others gradually extended the statistical usefulness of the
F=distribution., Kclodziejczyk (1936) reduced its use to the
canonical form of tests of linegr hypotheses,

In 1928 Fisher published another paper which is basic
for the development of discriminatory analysis. Again em-
ploying the geometrical approach, he obtained the formula

for the distribution of the multiple correlation coefficient




for normal‘variables. Although this was the immediate pur=~
pose of his work, 1t 1is rather two other results, given more
or less as corollaries, which concern us., As a limiting form
~of the multiple correlation coefficient distribution, Fisher
obtained a distribution, which he labelled (B); and as a vari-
ant form he obtained a third distribution labelled (C). The
{(B) distribution is today known as the noncentral chi-square
distribution, and Fisher recognized that it "may be inter=
preted as the distribution of the sum of squares of n varié
ates normally distributed with equal variance, but not with
zero means," The distribution (C) is what is now known as
the noncentral F-distribution, whose main present day use is
in determining the power of analysis of variance tests. Need-
less to say, Fisher did not put his (C) distribution to such
a use iﬁ 1928, but he did discuss one example . (the distri-
bution of a correlation ratio) which serves as precursor to
the modern usse.

It is interesting that the necessary analytic work had
 been done by 1928 for finding all of the eight distributions
-mentioned in connection with D2 in the preceding chapter. In
splte of this it took ten years for the statistical appli=~
;cations of these'distributions to D2 to be realized; and when
'they were, the reallization came independently to two different
‘investigatorsQ

In 1931 the central Studentized case was obtained by

Hotelling. Hotelling was interested in extending the work of

Student to normal vectors. Student's t-distribution made it
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possible to test the hypothesis that the mean of a normal popu-~
lation has & specified value; without assuming knbwledge of
the value of the variance. Suppose that instead of a sample
from a univariate normal population we have asample from a
multivariéte normal population, and wish to test simultaneous-~
1y hypotheses specifying the values of the population means

of all components of the normal vectors involved. Hotelling
had previously studied problems of this kind while partici_
pating in an investigatlion of the flow of particles in proto-
plasm (Baas-Becking, et al, 1928). To deal with this testing
problem, Hotelling suggested (apparently on intuitive grounds)
a test statistic, termed by him T2, and obtained its distri-
bution. The T2 statistic 1s & direct generalization of the
Student t , and is, except for a constant multiplier, identi-
cal with the correlated form of the CRL, given by Pearson in
1926, where the variasnces and correlations are not assumed
population values, bui values estimated from the sample., The
distribution of T2 obtained by Lotelling is simply the central
F-distribution first found by Fisher in 1921, Hotelling's
great contribution was to show that Fisherts distribution was
the appropriate one for a large class of testing problems,‘in-
cluding one of interest to us. T may be used to test the hy~
pothesls that two ﬁﬁltivariate samples have been drawn from

the same normal population, assuming that the samples come

from normal populations having the same covariance matrix.

We proceed to describe this test in some detail, -

Using the notation employed in Chapter II, let X 11




denote the value of the ith tprait measured on the kth indi-

vidual from the ath sample, where a =1, 2, k =1, 2,e0e, n

a’
and 1 =1, 2,¢+¢, p. Let X,; and X5y be the arithmetic
means of the values of the ith trait in the first and second
samples, respectively, and define

*11 = *o1
di= l 1 ,n=n1+n2"“2,
— by
\J oy 2
! 1o
nayg = :Z;‘l(xnk = Fpy) (Rpgy = ) + D) (%533 Fpy ) (5p 5 ).

k=1

Now form the matrix A of the quantities a, .:

1]
A= f11 Bpp vt
821 8220 °°* apy
oNrse
a a LI W ]
pl p2 ®pp

Next invert the matrix A, to obtain the matrix A"l with
13

elements a “. (It is this matrix inversion which begins to

present great practical difficulties if p is vefy large).

Hotelling's statistic is then
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The hypothesis 1is re jected when T2 is too largé. the critical
value fbr rejection being of course set according to the level
of sigrificance desired. Hotelling proved that E%%ég T2  has
the distribution of F with p and n+l-p degrees of free~
dom, The critical values may therefore be taken from the widely
available tables of percentage points of the F~distribution,

Thg test just discussed is pertinent to the discrimination
problem, since there is no point in worrying about which of
two populations an individual comes from unless the two popu~
lations are distinguishable. In the applications of the linear
discriminant function (Chapters V and VI) it is'customary first
to employ the T2 test to establish the difference of the popu~
lations involved.

The choice by Hotelling of the T° statistic seems to have
been based on intultion. It is interesting that this par- )
ticular statistic may be obtained by applying a general pfinci-
ple, and that it has certain optimum properties. Neyman‘and
Pearson (1928) proposed the likelihood ratio criterion for ob-
taiﬁﬁng statistical tests, and applied this criterion in 1930
and 1931 to obtain tests of the hypotheses that two or more
univariate normal samples arose from the same population,

Wilks (1932) obtained tests for a number of multivariate normal

hypotheses by application of the likelihood ratib principle,
In particular, Wilks found the likelihood ratio statistic for

testing'the hypothesis that k p-variate samples came from
the same population, assuming that the samples arose from nor-

mal populations having the same (unknown) covariance matrix.




When ¥ = 2, Wilks! result reduces to Hobtelling?s.

Wilks also found the likellhood ratio test for the hy-
pothesis that several normal populations have the same co-
variance matrix, Since the aasumption of equal covariasnce
matrices underlies the linear discriminant function, the latter
test is sometimes used as a preliminary to discrimination.
Bartlett (1937) proposed a modification of the constant factors
of the Wilks criterion and other modifications and applications
of these procedures have been considered extensively, for ex-
ample by Lawley (1938, 1939}, Bishop (1939), and Rishop and
Nair (1939). Exact tables are available only for the case
p =1 (Thompson and Merrington, 1943).

2

Work on T is still continuing. Hsu (1938) investi-

gated the noncentral Tz—distribution, that is, the distri-

bution of the'TZ test statistic in case the sampled p0pulationsf

are 1in fact different. He found that the noncentral T°-

distribution coincides with the noncentral P~distribution in-
vestigated by Tang (1938) and with the (¢) distribution of
Fisher (1928). Because of the identity of 72 and Dz, Hsuts
result is equlvalent to that of Bose and RPoy (1938) discuss-
ed in Chapter III. In 1941, Simaika, following the lead of
Hsu (19L1), demonstrated thatf T2 has the greatest power of any
test whose power depends only on the distance ( l&g) between
the populations. Further optimum properties of the T2 test
&re known. Wolfowitz (19L%) showed that the T2 test 1s the
most stringent similer test, and Hunt and Stein showed the

e

- test to be most stringent and the uniformly most powerful
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invarisnt test (see Lehmann, 1950)., Further work has been
done by Hotelling (19l47) and Hsu (19L5).

Two other papers by Hotelling (1933 and 1936) are also
related to the problem of discrimination. In the earlier
peper, he considered the problem of finding that rotation in
p~dimensional space such that in the new coordinate system
the coordinates would be independently distributed. Thesé

new coordinate directions were termed by Hotelling the "princi-

- pal components" of the given multivariate normal distribution.

It is interesting that the essential idea of Hotelling's work
was anticipated by Pearson (1901). Girshick (1936) showed
the equivalence of Hotelling'!s results with those obtainable
from the maximum likelihood principle. This topic is dis~
cussed in greater detall in Part II of the present monograph.
In 1936 Hotelling considered the relations which may ex~
ist between two correlated sets of random variables., He show=-
ed how 1t was possible to rotate the sample space so that in

the new coordinates, the varlables of each set are independent

 among themselves, while between the sets there is dependence

only between certain corresponding pairs of variates. These
variates are called the "canonical variates" and the corre-
lations between them, the "canonical correlations." This work
is related to the linear discriminant function, since the |
latter may be viewed as a canonical variate. Waugh (1942)

has illustrated the application of canonical variates to

econorniic data.




CHAPTER V

The Linear Discriminant Function.

3

The first clear statement of the problem of discrimi-
ﬁation, and the first proposed solution to that problem, were
given by R. A. Fisher in the middle of the 1930ts. As was
the case with Karl Pearson's CRL, the ideas of Fisher first
appeared in print in papers by other people [Earnard-(i935),
Martin (1936)], but it will be convenient to begin with a
discussion of Pisher's own first work on the subject. This
was contained in his paper, "The use of multiple measurements
in taxonomic problems," which appeared in Annals of Eugenics
in 1936,

In this paper, Pisher develops his theory largely by
means of working out a numerical example, and he is not al-
ways careful to state precisely the assumptions which underlie
- hls conclusions, 1In the exposition of his work which follows,
it has been necessary at various points to infer what is meant,

The general situation studied by Fisher is as follows.
There are, say, two populations, TTl, and ‘ﬂé. From each
population we have avallabtle a sample, say nl items from
TTl and n, items from 772. There is then presented‘a new
item, say I , which may have come from either TTl or fTé.

The decision problem 1s to assign I %o ocne of the two
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populaiiong. The evailab of measures

mernts ol which are

Saoon L

We may werty gelution by cone

K4 wiry S gy » v e b e - | o o ey . — 2 -
gidering first the sveclal uwnlvariats case;, p = 1. We then

values may be represented

individual I. It sesus reasonabls to assign I
roup which it moré nearly resembles as indicated by the
measurements. We might, {for example, compute the arithmetic
means, say El and EZ s of the two samples, and then see
to which.of these mgsns x 1s closer. This is in fact the
proccdure whlch Fisher proposes. (It may be noted that Pisher's
rule implies that the two possible errors of classification ars
treated symmetricaliv. This matbter is dizcussed at length in
Chapters VIII and IX'l5.

Pisher deals with the wuoliivariste provlsm by

. k4 2 i T Y o o o 13 2 o £ o
it to the univariate problsem just stated. This is

he p o measursme

neny Aiffer.

e

A o %
be copbingd to nroduce a

gingle quantity., but combinations,




~and the major accomplishment of Fisher 1s to give a reason-
- able sﬁlution to the problem of choosging the coefficients in
the most advantageous way,

Let us denote the measured value of the jth quantity on
the k™ individual in the ith sample by X3 yu 1 =1,2,;

J=1,2y°°sp; k =1,2,°¢°,ng4; and denote the measured value

- of thevjth quantity on I by Xj‘ Correspondingly, let

(1) Ve = M gy * Ny Ryg + wre 4 )‘p X1k
and

2 ' — ) ‘ L Y

(2) y 1 % % + Ap xp.

The approprilatness of the choice of values for )l’ th"’: A
P

may be measured by the relative ease of classifying I through
use of the numbers 7y and Y3+ If the two y samples are

widely spaced and each is tightly clustered about its own mean:
X XXXXX X 0O 00000 O ©

it will in general be easier to make a correct decisicn about

I than if the y samples overlap:
X X0X0 X OX 0 ©

Flsher introduces a numerical measure of the ease of dis-
tinguishing between the two populations. This is the ratio:

difference of sample means

)

standard error within samples
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He then is able to suggest a reasonabls criterion for deter=

mining appropriate values of A A st Alﬁ "what linear

1’ 2
function of the ... measurements ... will maximize the ratio
of the difference between the [ﬁample] means to the standard

deviations within [samples]?"

Mathematically, the problem is to maximize the ratio

|y, - ¥; |

\]21 (ylk‘" 37_1)2 + Z (Yo = -Y-g)a

2 .

(3)

where J3 = %; 2:1 Vi’ and ‘E:i denotes summatlon over the

ith sample. We do not need to divide the denominator Dby the

constant nl + n2 - 2, since constant factors do not affect
the maximization problem, and we may equally consider the

square of (3), since this is more convenient mathematically

~and since the non-ncgative quantity will be maximized when its

square is maximized,

A little computation shows

p
5=1

where d, = 1 x . -1 |
j n, o “2ik n, 231 xljk 1s the difference in

sample means for the jth quantity, and

2. (v, =52 =2 2
Ve " Tt 2 Gy TS = 20 N, sy

1 2 ,
j=1 m=1




where Sjm is the pooled sum of products of deviations from

the sample means of traits J and m:
2
Sim = 2. 2\1 (%3 50 = %q3) (R = Xqp) e
i=1 :

Here the quantities dj and Sjm are computed from the

sample msasurements.,

Our problem then is to determine the values of the A

for which , ) :
" ( Z M %)
. P P

j%i g N A "

is maximized. Since (J) is not altered when ell of the )'s
are multiplied by the same quantity, there will be many equal-
1y good solutions, differing only by a constant factor. Ordi=
nary methods of the calculus give the solution. If we dif-
ferentiate (l;) with respect to )\r and set the derivative

equal to 0, »r = 1,2,*++,p, we obtain the equations

Y p
2 2 N Mg |
: m=l i1 J m *jm . _ :
7 | %% - .‘E_; >‘J Sip » T=1s2s000,p
N, d
31 373

Since we are only interested in solution up to proportion-

X M sy
Z>‘5 dj

ality, we may ignore the factor

which
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is the same for all equations, and obtain as a solution the

roots ‘Aj of the equations

S;; M+ S >\2+---+slp)\ = dy

12 P

11

Spp Myt Spp Mgk eee + Sop My = dp

}\ = dp.

5,1 )1+sp2}\2+---+s )

pp

- We have thus in practice to solve a set of p simultaneous

linear equations; and as was pointed out by Karl Psarson in
1926 this places a practical limitation on the value of p.

Having obtained the appropriate A's, we cen now com-
pute the corresponding quantities ¥y, ¥,y and y, accord-
ing to (1) and (2). The problem becomes a univariate one,
and we can, for example, classify I into 171 if and only
if y 1s closer to y; than to 7,.

It will be appropriate to give a numerical illustration,
and for historical reasons it seems desirable to use the il=-
lustration employed by Fisher, Fisher considers the problem
of distinguishing between species of Iris plant on the basis
of foﬁr measurements made on each plant: sepal length, sepal
width, petal length and petal width. He has samples of 50
from each of 2 species, I. setosa and I. versicolor (a third
specles, I. virginica; is included in making genetical appli-

cations). Fisher's example is unfortunate, in that a single




one of these characteristics will serve to do all of the dis-
criminating that anyone would ever need. Thus, the 50 Iris
setosa plants have petal lengths ruining from 1.0 to 1.9 cm
while the 50 Iris versicolor plants have petal lengths from
3.0 to 5.1 cm. Clearly nb refined statistical technique 1s
needed to distinguish between such populationsi
An excellent illustration of the linear discriminant
function may however be obtained if we ignore the figures on
petal length and width, and pretend that only the figures on
sepal length and width are available. Figure 1 shows the
two samples, Irls setosa and versicolor, plotted for the sepal
measuréments. An inspection of this diagram shows just where~
" in the value of the linear discriminant function lies. If
we consldered sepal length and sepal width separately (see
Figure 1) it would be quite difficult to ﬁake an accurate dis-
crimination because of the large degree of overlap of the two
samples. But 1f we compute the linear discriminant function,
the digcrimination becomes very good. _
“The figures involved are the following, letting 771 be

Iris setosa and 'Tr2 be Iris versicolor:

d; = 0.930 dp = = 0.658

811= 19.143) 851 =8y, = 9.0356 S5, = 11.8658 ,
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7.0

Sepal 0
length o)

4.0

2.0 3.0 4,0 4.5
Sepal width

Figure 1.
Fifty Iris setosa plants (x) and fifty Iris versicolor
plants (o) plotted for sepal width and sepal length,




‘We have then to solve two linear equations in two unknowns:

19»11.'.3}4_ Xl - 9.0356 XZ = 0.930

9.0356 %l + 11.8658 )2 = ~ 0.658 .

The roots are easily found to be:

>

(6) N, =4 0.1167

1 , == 0.14h3

Any pair of numbers proportional to these would serve as
well, |

A simple geometrical interpretation may be given to the
LDF. On figure 1 is drawn the line a whose slope is

A

2 .
N = 0.8086 1If we use, not the coefficients (6) but the
1

proportional coefficlents

>\'=_}.L_=o.6288., M = Ao

1
\})i+k§ Ao+ A

1

= 0.7776

2

then the LDF

1 {
T = A x4 Ao %,

amounts to projecting the points (Xl’x2) onto the line q.
The line a 1is so directed that projecting the samples onto

it providés the maximum possible separation of thebsamples.

We may note in passing that.in this particular example,
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excellent discrimination could be obtained by using the ratio
of sepal width to sepal length; this amounts to a projection
through the origin onto a vertical line. 1In other situations,

however, the ratioc would be a worthless discriminator. The

‘great virtue of the LDF is that it always projects the samples

in the direction which gives the greatest possible separation.
It is interesting to note that a trait which of itself

provides little or no discrimination, may still be worth

measuring in that it enhances the discriminatory power of

other traits. Ah exposition of this situation has been given

by Cochran and Bliss (1948).

| In‘ﬁis paper, Fisher makes several interesting comments
on the relation of the‘LDF to other statistical techniques.

On the one hand, the LDF corresponds tb an analysis of vari-

- - .2
anceé, with (y2 ~ yl) corresponding to variance between

-2 -2 ’
d fnd - ) -
species an Ell (ylk yl) + 22 (yek y2) correspond

ing to varlance within species., On the other hand, the LDF
can be considered as the solution of a regression problem, .
This is done by giving to each population a different wvalue

of an artificial variable, say =z, and then regressing =z

on the measurements xl,oon,xp + Through these considerations,
Fisher is led to suggest a test of the hypothesis that the

two populations are in fact identical. This test is identical

with the T° test proposed by Hotelling in 1931, which has been

discussed in Chapter IV.



In conclusion, it should be pointed out that Fisher makes
no attempt to Justify on probabilistic grounds his definition
of optimum separation, nor his restriction to linear combi-

s nations of the measurements., We shall see later, in Chapter
VIII that when the two populations are normal and have the
same covariance matrix, then the LDF has certain optimum

pfbperties. Otherwise it is not optimum.

45




46



CHAPTER VI

Application of the Linsar Discriminant Function.

iSince 1935 the LDF has been applied to an amazing variety

of problems. To indicate the diversity of the published ap=~
plications, we present here in‘tabular forﬁ‘some thirty=-two
papers., In each case we give the nature of the groups being
discriminated, and the nature of the observed quantities on
the basis of which the discrimination is effected. We have
‘purposely omitted from the list papers in which previously
published data is reanalyzed, such as Bartlett (1947), Brown
(1947), Fisher (1938b, 1940), Garrett (1943), Park and Day
(1942), and Penrese (1947).

Not all of the applications in this list are of the
simple type described in Chapter V; some involve modifications
and extensions of the LDF such as are discussed in.Chéptef-
VIiI. ~However, in general the applications follow a set pat-
terns the nature of the groups and observations are des-
cribed, the LDF is computed, and the significanée of the
discrimination is tested. Sometimes there is an enquiry into
the accordance of the dats with the assumptions which under-~
lie the LDF, or an appreciation of the relative discriminatory
value of the different variables measured.

It may be noted that the thirty-two papers listed appeared
in twenty-one different periodicals, most of which were not

gpecifically statistical in nature.
47
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CHAPTER VII

Some Modificetions and Extensions of the Discriminant Function.

During the fifteen years in which the LDF has been in use,
a number of papers have been published which are concerned with
modifications of the LDF,‘designed to simplify its application,
or with extensions of the LDF to problems somewhat different
from the classification problem which led Fisher té its in-
vention. Sdme of these results are briefly described in the
present chapter. |

If p, the number of tralts measured, 1s small (say 2,
3, or h), then there is no épecial difficulty in solving the
linear eqqations which determine the LDF, even 1f no comput-

ing machine 1s avallable. 3But if p 1is even as large as 6

~or 8, the lasbor involved begins to be practically prohibit-

ive, and with p greater than 10 few persons will care to
tackle the problem aided only by a desk calculator. The
labor involved in computing the coefficients Sij

as pz, and the labor involved in solving the equations in-

increases

creases about as p(p!).

For this reason there has been a good deal of effort ex-
pended 1n seeking out simple and reasonably satisfactory ap=-
proximate solutions. There is of course a large general

literature on the solution of linear equations, which we shall
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not consider here. We do however wish to discuss some work
aimed specifically at the equations arising in discriminatory
analysis,

The first suggested approximation seems to have been that
given by Karl Pearson {1925). He pointed out that if the traits
are all independent, then we may replace the system of p line-
ar equations in p unknowns by p equations each involving

a single unknown:

(1) Si3 )i =d,; 1 =1,2,0°,p.

These equations present no difficulty even if p runs into
hundreds, Of course; the Fearson method 1s only reasonable
if in fact the correlations between traits are not too large.
Pearson suggested that the traits  to be measured might be
chosen with this in mind.

Beall (19L5) has investigated the accuracy of approxi-
mation (1) and of other approximations for three sets of data,

computing in each case the discriminant ratio obtained. 1In

- one of his examples (data from Travers 1939) the correlations

are mostly small; ranging from - 0.41 to + 0.38, with 10
out of the 15 being between ~ 0,1 and 4 0.1l. In this case,
the simple equations (1) give a discriminant ratio of 1.27,
which may be compared with the ratic of 1,31 obtained by us~
ing the correct LDF. DBut on another example (data frdm L. S.
Penrose), where the correlations run from 0.3l to 0.E7, Beall

finds that (1) yields a discriminant ratio of O.9h, as compared
with the LDF ratio of l.25.




These results suggest that 1 most of the correlations

are small (say between =~ 0.2 and 0.2) with none of them
very large (say an absolute maximum of 0.6), then the simple
solution (1) may be used without much loss in dilscrimination.
Another interesting approximate solution has been given
by Jackson (1943). He postulates that all of the correlations
have a common value, whose estimate is, say, 1r, andi corre=-

spondingly replaces the quantity § by the quantity

r QSii Sj"

If we divide the i of the linear equations for the dis-

1j

criminant function coefficlients by Sii’ and let P% =

d:
s == 1

i T3 1 \VS11
+r Hé

we obtain the system

+ p r5_+ 4+ p P% = e,

I'ri + Vé + ré + **c 4+ p Fb = e,

I
o

r. + r + pr + °°* + .
ey i M=o,
These equations may be readily solved. Summing them, we find
p P
(3) L+ (p-1r] 201 = 2 s,

:th

The j of equations (2) may be written

p
() (1-r) P? + :fo*i = oj.

i=1
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Combining (3) and (l;), we have

rk _ (1-r) oy + pr(ei-g)

(%) ;=

(1-r) [1+(p-1)r]

where p e = 2: ey - Since we require a solution only up to

proportionality, we may use

(6) d- >% = (1l=1) ej + P r(ej~3).

There still remains the problem of determining an everage
value of r, Jackson and Beell suggestvarious estimates,
which are not very dissimilar, A reasonable one is Jackson's,

given by Beall as:

i=1 i=1 i=1
where
n n
1 2
,2 L1 2 2 2
J
j=1 j=1
n n
1 2
{ - x w1l 2
+ = \
(np#n )uy = 20 X, % 2%
j=l j:l
) ny p 2 no r 2
T e e [ 1 - 2
j=1  i=l =1 1=l .
n n 1Y
1 P, 1 >
(np4n,)v = § T+ >SS X3 3
j:‘l i=1 j::l i=1

The computations here are not heavy if a desk calculator is

available,
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In alIFOf‘thé’exaﬁplés considered by Beall, the results
obtained in using (H) compare very favorably with those ob-
teined from the LDF. fhere the LDF gives discrimination ratios
of 5.03, 1.31; and 1.25, the Jackson method (6) gives 5.00,
1.30, and:1,2hg respéctively. Tt should be remarked however;
that in all thrse exemples the correlations are not widely

divergént;'

In using %ha Jaékson technique, one shéuld, where pos-
sible,\give thé scales of measurement & common orieﬁtation,
SO thaﬁ the ébrfelations will at least tend to have the same
sign. Thus, if the messurements are all related tq inte;lim
gence, thenua highvscore on all tests used should‘héve’the
same meaningéueither high intelligence in all cases or low
intelligenge’in all cases., This result can be obtéiﬁed b&
apprOpriate choice of signe.

In conclusion, we may state that the problem of appréxi-
mate solutions of the LDF equaticns deserves further study,

" both empiricel and theoretlical, Eupirically, more studles
of the kind cerried out by Beall would be of interest. Theo-
retically, one might seek msathemstical bounds for the loss
in discriminatory power which results from using various ap-
proximations., TIurther approximations might slso be studied,
an obvious one being a combination of those of Pearson and
Jacksoen., |

Pending such studies,; Tthe experimenter may use the

following rules of thumbs
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(1) If p is not too large, or If the importance of
the problem and accuracy of the data warrant the
extra work, the accurate LDF should be found ex-
actly. |

(2) If the correlations are believed to be mostly
small, the equations (1) should be used.

(3) If the correlations are sizeable but not too
divergent in size, the equations (6) should
be used, after, however, 86 takxing the orien-
tafion of scales that the correlations are all
of the same sign.

Theoretically the LDF is designed to solve the problem of
assigning an individual to the proper one of two populations,
However, from the very beginning (Barnard 1935) the technigue
has been employed with more than two populstions., It 1s clear
that a single linear function will do a good job with more
than two populations only when these populations are collinear
=-that 1s, when the changes in the meens of the p *raits,
from one populaticn to another, are proportional. A4s is
customary in applied statistics, an assumption which undsr-
Jies a theoreticel result need not te exaculy satisfied for
the result to be usable. But 1f the populations are not at
least approximatgly collinear, useful information will be lost
if classificetion is carried out through use of the LDF. I%
is possible to test the hypothesis of zcllinearity--trots Lhavs
been proposed by Fisher (1928), Bartlett{19!.7b), and Rao (19)8b).

The two latter authors reexamine Zarnard's (1935) data, and




find that the linearity assumption 1s not reasonable in that

case. A visusl inspection of Barnard's data will lead to the

same conclusion. One might almost make 1t a postulate that
1f the samples are large, a test of collinearity will lead

to rejection. This may still not preclude the reasonable=
ness of using the LDF, if the departure from linearity, while
significant, is not large. If 1t is large, one may employ
more than one discriminant function. This procedure is dis-
cussed by Rao (1948¢) and Brown (1947), as well as in the
papers just cited. For a different approach, see Day and

Sendomire (19h2).

In the practicel applications, after the LDF has been
found, it is natural to enquire whether some of the vari-
ablés contribute enough to the discrimination to warrant
their continuance in further studies. The problem is compli.
cated by the fact, mentioned in Chapter V, that the contri-
bution of a variable to the discrimination may be indirect.
The problem of omitting a variable from a discriminant func-
tion is not essentially different from that of omitting a
variable from a multiple regression. Aside from empirical
discussions (such as that in Barnard, 1935 and other appli~
cational papers), various authors have proposed tests of the
additional discriminatory power contributed by a particular
trait or traits, Por discussion of the numerical problems
involved in dropping a variate, see Cochran (1938) and

Quenouille (1949a, 1949b).
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‘Thé LDF has provéd to be a valuable tool in filelds of
application other than that for whiéh it was originally in-
tendsd., There 1is a'tendéncy in the literature to term any
linear combination of measurements; in which the coefficlents -
are adjustéd to achieve some optimum effect; a "discriminent
function;" even though the effect sought 1s not the specific
discriﬁination'of groups. This extension is not of course
directly pertinent to the problem of classification; and
will bs dealt with briefly.

An early example of such an extended use of the LDF is
provided by H. F. Smith (1937), who found that linear func~

tion of several observed characteristics of wheat which corre-

. lated most highly with a compound of the cofreSponding quall~

ties representing economic value. Further examples of ex-
tension of the LDFF arlse when one seeks 1o assign scores to

qualitative characters in such a way as to maximize some ef=

fect. Examples of this process may be found in Fisher (1925~

1946, pp 289-295), Fisher (1946), Maung (1941) and Johnson
(1950}« |
The extended LDF has even been used to effect a genera-

al attack on problems of multivariate analysis (Rao, 1948b).

. Recall that in Chapter V we introduced the LDP as thaﬁ

{linear) reduction of & multiveriate problem to the corrae-

.sponding univariate pfpblemg which would effect the best

separation of ths univeriate samples. Morevgenerally, in
performing multivariats tests of significance; we may seek

that linear reduction o¢f the data which makes greatest the




‘apparent significance oeing tested. The tests obtained in -
this way cannot in general be dealt with through solving
systems of linear equations, but the test -~tatistics obtain-
~ed are functions of the roots of a determinantal equation of
the form |A - AB| =0, where A and B are px p sample,
covariance matrices. The sampling theory of these roots and
of the test statistics which depend on them is very compli-
cated and will not be dealt with here. 1In general, thé
distributions invélved have not been tabled, but large-
sample approximations are avallsble. References to some of
the literature are given in the bibliography. See Anderson
(1946, 1948), Anderson and Girshick (194)), Anderson and
Rubin (1949), Bartlett (193%, 191, 1947a), Fisher (1938b,
1939, 1940), Girshick (1939), Hsu (1939, 1940, 194la, 19)1b,
1941c, 1941d), Rao (1946, 19485), and Roy (1939¢, 19/0a,
1940b, 1942a, 19L2b, 1945, 1946ba, 194 6b). In his lectures
at Columbia, Anderson (19,7) has glven a thorough treatment
from the likelihood ratio viewpoint. General surveys have
also been made by Bartlett (197b) and by Tukey.
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CHAPTER VIII

Classification from the Point of View of Probability of Error.

The distinguishing feature of the modern theory of sta-
tistical inference is the focusing of attention on the proba-
bilistic behavior of statistical procedures. The approéch of
the linear discriminant function to the classification problem
i1s essentially intuitive rather than probabilistic: we ask,.
what linear combination of the measurements best separates
the samples? The philosophy underlying the LDF 1s very simi-
lar to that which motivated the development of the analysis.
of variance by Fisher in the 1920's.

The development of a theory of statistical tests, as
distinct from a collection of speclal examples, may be said
to have begun with the introduction of the notion of types of
error by Neyman and Pearson in 1928 and 1933. Corresponding-
*ly, the initiation of a theoretical attack on the classifi-
cation problem may be sald to have begun when the Neyman-
Pearson ideas were adapted to the discriminant function by
Welch in 1939. Welch!s results were published in a brief
note, but the ldeas involved are of sufficient importance to
warrant a rather full discussion.

" Welch considers only the problem of classifying an in-
dividual into one of two populations, say TTl and TT2, and
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further restricts the probiem by assuming that the proba=
bility density function of the measured quantities 1s com-
pletely known within each of the populations. Let
fl(xl,x2,°--,xp) denote the probability density of the ob-
servable quantities Xl,Xz,---,Xp in Trl, and let

fz(xl,xg,---,xp) be the corresponding density in TTZ.

Welch observes that any method of classifying an indi-
vidudl I into one of the two populations on the b asis of
observations on Xy, Xs,°*-, Xp » emounts to a partition of .
the p~dimensional "sample space" of the X's into two ex-
haustive and mutually exclusive regions, say Rl and R2,
with the rule that I will be assigned to ’ﬂ“l if the random
point with coordinates (Xl, XZ’.'.’XP) falls into R;, and
will be assigned to Trz it (Xys Xpseee, Xp) falls into R,.
The choice of a rule for classification or discrimination is
thus equivalent to the choice of a partitioning of the sample
space into the regions Ry and Roo

Welch further proposes a criterion on the basls of which
the various possible partitions may be compared as to thelr

desirability. He suggests that a partition (or rule for

classifying I) be judged on the basis of the probabilities of

misclassification which arise when the rule is employed.

Two forms of the problem are treated. PFirst, Welch Sup-
poses that there exist a priorl probabilities that I comes
from the two populations, say probability pq that I does

in fact belong to Trl,,and probability P, that I bélgngs to
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Tr2° Here of course Py *+ Pp =1, Using the method of Bayes,

we may compute the a posteriori probabilities that I belongs

to Trl and to Trz. These values are

plfl(xl’xz’..° ’X.D)

?

’plfl(xl’xa”..’xp) + pefz(xlgxe,...,xp)

piZ(xl:xz,"-.xp)

plfl(xl,xz.---,xp) + p2f2(x1,x2,o--,xp)

respectively. We may then assign I to that population whose

a posteriori probability is greatest. This procedure coin-

cldes with that which is obtained if we compute the likelihood

ratio

_ fl(xl’xe".° ’xp)

A o=
fz(xl,xz,- ,xp)

and assign I to Trl if x> gg, otherwise assigning IM to
772. Welch asserts (as is easil? shown) that these equivalent
rules lead to the minimum possible probability of misclaésifi-
cation, |

The solution obtained by Welch under the assumpfion of
the existence of a priori probabilities had an historically
interesting precursor. In 1898, Heincke was led, in his study
of the races and varieties of herring in the North Sea,; to
attempt a probabilistic soluticn of the species problem.

Heincke noticed that whereas each of several observable traits

of the herring would provide some informstion as to the'variety,
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none of these tralts considered elone would enable him to make

a sufficiently accurate classification. He thus sought a
method which would enable him to combine.the information ob=-
tained from several observed traits. The distinguishing
features of his work were, first, that the varisbles he con-
sidered were primarily discrete instead of continuous, and
secondly, that he made the assumption of equal a priori proba-
bilities, That is, if there were three possible varieties
from which a given herring might have come, Heincke assumed
that there was a 1/3 chance that the herring came from each.
Heincke'!s principle of classification, granting his assumption,
has a distihctly modern sound: "Das Individuum muss schliess-
lich der jenigen Rasse zugezahlt werden, fur die das Produkt
der Wahrschelnlichkeiten aller Eigenschaften ein Maximum ist."™
Heihecke's assumption of equal a priorl probabilities
corresponds to the ancient "principle of insufficient reason,"-
However, from the frequency interpretation of probability here
adopted, this assumption would be reasonable only if, say, the
herring had been drawn at random from a master pdpulation in
which the three varieties were mixed in equal proportions, In
general, the validity of the assumption of a priori probabili-
ties seems to be restricted in applications.  An interesting
example in which there existed known a priori probabilities
was consldered by Martin (1936). Here, skulls and jawbones
were recovered from a large grave, but in the recovery pro-
cess the Jawbones became disassoclated from the skulls., In

the sexing of the material, it is considerably easier to attach




the correct sex to a skull than to a jawbone. Thus (con-
siderebly simplifying the problem for purposes of illustration)

we might say that we know the proportion of male and female

jawbones, and can use these proportions as known a priori proba-

bilities. The example is exceptional, however, and on the
whole & solution of the problem which does not involve the
assumption of known & priorl probabilities is more frequent-

1y needed. We may reﬁark that 1t 1s. easy to show that a
formulation in wﬁich there are assumed to exist a priori pfoba—
bilities which are however unknown, does not essentially differ
from a formulation in which no a priori probabilities are as-
sumed to exist. (In'thellanguage of Wald's theory, thls amounts
to saying that the class of Bayes solutions is complete. This
point is discussed further in Chapter IX.)

Heincke's wofk was the stimulus of a line of research on
the European continent which seems to have been rather inde~
pendent of the researches which are the main subject of this
paper. Of this European work we may mention that of Zarapkin
(193}) s Kozminski (1936), and Cavalli (1945). Zarapkin modi-
fied the Heincke method, and Cavalll considered the relative
merits of the methods of Heincke and Zarapkin. These re-~
searches do not seem to have contributed much to the main
stream of discriminatory analysis.

The biological problem of species, has, naturally, been
the stimulus of a great deal of work on the classification

‘problem. We have already seen that Karl Pearson began with

the problem of human racial classification, and Fisher's
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first paper on the discriminant function was concerned with
taxonomy, Heincke, Kozminski, Zarapkin, and Cavalii were
similarly motivated. In this connection there is a wealth
of material on mathematical definition of species, mostly
not of a probabilistic nature. See, for instance; Joyce
(1912), where an idea of Soper's is used; Williams (1929);
and Ginsburg (1938), who uses the notion of probability of
misclassification to define degrees of biological dissimi-
1arity.

Welch also considers a second form of the problém, in
which no a priorli probabilities are postulated. Here there
are two probabilifies of misclassification to be considered:

(1) The probability of classifying I into Tr2

‘ when in fact I ©belongs to WTl;

(2) The probability of classifying I into Tl"l

“~when in fact I bglongs to TTZ'
Let us denote these probabilities by P(R2|TV1) and P(RIITTZ),
respectively. Welch states (as agaln is easily shown) that
to)minimiZe these two probabilities of misclassification, sube
Ject to the condition that they are equal, one again employs
a partitioning of the likelihood ratio kind. The region Ry
consists of those polnts for which A > k, the value of Ik
being chosen so that P(RllTrz) = P(RZITTl).

The reader acquainted with the Neyman~Pearson theory will
recognize the foregoling as a slight modification of the fact
thaf the most powerful test of a simple hypothesis against a

simple alternative is that based on the likelihood ratio




principle (Neyman and Pearson, 1G33a)., The only novelty in
Welch's work 1s that the two types of error are treated sym-~
metrically, whereas In the usual formulation of the hypothesis
testing problem, the two types of error are trecated differ-
ently: we place a preassigned 1imit (called the level of
significance) on the probabllity of one error, and then seek
to minimize the probability of the other error. Symmetri-
zation of the problem does not alter its essentlial mathemati-
cal nature,

Welch concludes his brief note by considering an example.

Ee supposes that X_, sz"',Xp heve a joint normal distri-

1
bution with a known covariance matrix (0l which is the same
in the two populations, the two populations thus differing
only in the (known) expectations, Formally,

P
2 67 (xy=8y, ) (x4-84,)
J=1

1
-2

A

i

=1, 2.

When we form the likelihood ratio the constant factors cancel

- and the exponential factors combine to give

P D
\ 13
e O R D)
)\ = 6

Thus ) is a monotone function of the double sum in the

exponent, which may pe simplified. We obtain

P P P P

, 1 S

“lgpr=32 26 R CRU -0;5005) + 2. 2, otd(e-05) x,
i=1 j=1 i=1 j=1
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The first term on the right is independent of the sample peint,
so A is a monotone function of the second term. But the
latter is that to which Fisher's LDF simplifies if the popu~
lation expectations and cpvariance matrix are known. Thus
Welch's'wofk puts & theoretical basis under the LDF, at least
in a special case.

I+ is important to observe the essential nature of the
assumption that the two populations have the same covariance
matrix., Without this assumption, the likelihood ratio does
not simplify as much as before, and we find that ) is a
monotone function of & quadratic function of the sample values,
We are then led to a quadratic rather then to a linesr dis-
criminant function. Smith (19)7) has introduced and employed
these quadratic discriminators. The theory of the quadratic
discriminant functions has not yet been extensively developed.

From the applicational point of view, Welch's results
are obtained under rather severe restrictions. Two of these
were removed in 19,5 by von Mises. Von Mises considered the
problem of classifying the individual into one of several popu-
lations, say Trl, TTE,'--, TTL, instead of only two; and fur-
ther, he was able to remove the rather undesirable restriction,

imposed ab initio by Welch, that the two probabilities of

'misélassification should be equal. If there are k popu-

lations, then the nutiber of possible errors of classification
is  k(k-=l), since the individual may belong to any of the k
populations, and then may be misclassified into any of the

k=1l remaining populations. Thus, the two population problem




- gives 1.2 = 2 errors, the three population problem gives

2+3 = b6 errors, etc. The problem thus becomes very rapidly
more complicated with increasing k. We can effect a con-
siderable simplification if we focus attention not on the
mlsclassifications but on the correct classifications, for
there are only k of the latter. In the case k = 2, we

get the same results whether we consider misclassifications

or correct classifications, since there are two of each and
their probabilities are complementary by pairs. 1In the
general problem, however, & real simplification is implied

by conSidering the correct classifications: This amoﬁnts to
treating all errors alike for a given true population, but
permitting the errors to be considered differently as the

trﬁe population is changed. We may extend our former no-
tation, letting the saﬁple space be partitioned into k
reglons RIQ Ros®t*y Ry » with the rule that I shall be as-
signed to TVi if and only if the sample point x=(x1,x2,o-o,xp)
falls into R;. Again, P(Ril’lTj) will denote the probability

that I will be assigned to Tri’ given that I Dbelongs to

LT

Von Mises formulated the problem in the following terms:

what classification procedure will maximize the minimum of the
probabilities P(Rilfri) of correct classification? (It may
be noted that this formulation of the problem amounts to a
completely symmetric way of viewing the errors.) As did
Welch, von Mises considers that the random variables to be

observed have, wlthin each of the k populations, known

»
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density functions, which we may denote by fi(xl,xz,---,xp),
i = 1,25°°¢,k. Using the welhods of the calculus of vari-
ations, von Mises obtains the results in the following terms:
"The partition of the x-space that solves our problem 1is
characterized by two properties: (1) for all k regions Ry
the value of P(RilTTi) is the same; (2) along the border be-
tween Ry and Rj the ratio fl(x)/fj(x) is constant." Thus ,
Welcht's aszumption of equal probabilities of incorrect (and
hence of correct) classification comes out as a consequence
in von Mises work, and again the optimum partition of the
sample space 1is that given by the ratio of the likelihoods.

The reader who 1s acquainted with recent developments in
the theory of statistical decision functions will have recog-
nized that von Mises'! formulation of the problem (i.e., the
maximization of the minimum probability of correct clagsifi-
cation) is an illustration of the minimex principle. This
princinle, which seems to have been introduced into the theory
of statistics by Neyman and Pearson in 1933, has been the subw
ject of a great deal of modern development primarily by Abraham
Wald. ChapterIX is devoted to the application of Wald's ideas
to the classification problem,

The main practical disadvantage of the work of Welch and
von Mises lies in the assumption made by these writers that
the parameters of the normal distributions are all knoﬁn. The

Welceh test sbtatistic




involves all of the population parameters. In the great
majoritj of applicational problems we do not know the values
of Gij, 631’ and ejz, but must rely on estimates of these
quantities obtained from samples.

The problem of the estimation of the normal parameters
from sample values arises in two main forms:

(1) there are available samples of known origin

from 'ﬂl and 'IT2,

(2) the samples are intermingled, so that we do
not know for any individual in the sample the

true population of origin.

The second form of the problem is of course much harder than
the first, An approach to its solution, in the case of uni-
variate.nonmal samples, was made by Karl Pearson in 189 by
means of his method of moments., This technique haé not work-
ed well in practice (see Martin 1936) and is not theoretically
efficient. Fisher's maximum likelihood method provides a
theoretically better solution. However, the fact is that it

1s extremely difficult to decompose a mixture of two normal
populations unless the populations are very well separated,

so that the sample has two clear modes.

Rao (19&8) has considered a problem of this kind. He
considers the observed frequency distribution of heights of
L5l plants, supposed to be of two different types but botani-
cally indistinguishable. Assuming equal variances for the
two types, Rao estimates that the ssmple is drawn ffom a come~

pound population obtained by mixing in proportions 57% and
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li3 9% two normal populations whose means differ by about 1 1/2
standerd deviations. He decides, "these estimates can be
safely used for interpreting differences in heights," and
checks his goodness of fit with a chi-square of 1,30 on 6
degrees of freedom.

The trickiness of problems of this kind is made clear
by the following observation, due to Dr. Fix: if we fit a
single normal dlstribution to the same data, we may obtain a
fit whose chi-square is 0.68‘w1th 8 degrees of freedom! Thus
we obtain a better fit with the simpler model. This fact
makes one doubt that there is ﬁuch safety in Rao's interpre~
tation of height differences, and points out that there is
little hope of reliable results in resolving mixturés of
normal populatlons unless the samples are extremely large
(in which case departure from exact normality would cause
trouble) or unless the population means are separated by a
good deal more than 1 1/2 standard deviations.

Fortunately, samples of known origin are usually &vail-

able so that the problem of estlmating thie population parameters
arises in its simpler form. The obvious modlficatlon of the

Welch test statistic
P Y ’
ij
2 2 T (8 ~e) %
i=1  j=l |
ig to replace the unknown parameters by their estimates. This

is in fact what the LDF does; it corresponds to the extension

of the likelihood ratio principle to the composite hypothesis




case, in which one considers the ratio of maximized likeli-
hoods.,

In 19)4), Wald considered the problem of finding the dis-
tribution of a statistic obtained in the manner just suggested.

i
If s ]

is the estimate for 619, so that 34 4 is the usual
unbiased estimate for Gij obtained from the pooled sample
data, if Xx; and §i represent the arithmetic means of the
sample measurements on the 1th tralt in the two semples re-

spectively, and if (299259052 ) represent the measure-

p
ments on the individual I' to be classified, then Wald's

stetistic is

3

\ j_j

U = s zi(ffj - Ej).

P
i=l ]

]
=

The relation'df U +to the LDF is clear. Wald gives the large
sample distribution of T (this being essentially the approach
of Fisher in 1936) and investigates the exact distribution of
U. His results are not Simple, aﬁd are not in a fbnm avail-

able for applicational use. Further work on the distribution

needs to be done to make Wald's results more readily available
~for applications. In this connection, see Harter (1950).

A lengthy paper on the classification problem was pub-
lished by Rao in 198, The paper consists of three parts,
the second and third of which are concerned with the problem
of arranging a system of populations into a hierarchial order,
and gre hence not directly pertinént to discriminatory analy-

sis. In the first part, Rao reobtains the 19,5 results of
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von Mises, and extends them in several ways. He develops

further his suggestion, introduced in 19)7, that the qlassifi-
cation problem be modified to permit-classification not to

be made in certain cases. Thus, the sample space is partition-
ed into k + 1 parts, the usual classification regions

Rl’ Rz""p Rk, and a remaining part RO with the rule

that if the sample polint falls into RO no decision will be
reached, It is of course true that in many applicational
situations circumstances compel a decision té be reached; but
there are problems In which the contrary is true, and for
these casss the Rao method permlits the construction of a
classification rule with preassigned limits on all of the
probabilities of misclassification.

Rao extends to several populations the Welch solution of
the classification problem with known a priori probabilitles.
He adopts the idea of Heincke that if nothing is known about
the a priori probabilities, they may be assumed to exist and
all to be equal., Rao gives explicit statements of the like-

lihood principle in a variety of special cases,
Another recent work of interest is the 19,9 paper of

Hoel and Peterson. These authors presume the exlstence of

2 priori probabilities, and first obtain the same extension
of Welcht!s work to k populations which was obtained by Rao.
They then suppose that the a priori probabilities, while still
existing, are not known but may be estimated from a sample.
There may also be unknown parameters in the densities |

fi(xl,x2,°'°,xp). A set of estimators will be called opti-




wum if it maximizes the probability of correct classification.
The authors then consider conditlions under which.the maximum
likelihood estimates will be asymptotically optimum in this
sense,

The Hoel-Peterson paper suggests the following question,
which seems to be interesting. A more general formulation of
the definition of optimum would be as follows: that classifi-
cation pfocedure is optimum which maximizes the probability
of correct classification. We may then ask, does this defim
nition coincide with that of Hoel and Peterson--that is, can
best use of the sample information be made by first estimat-
ing the a priorl probabilities and parameter values, and then
proceeding to classify as if these estimates were known to be
correct? An answer to this gquestion should be possible, using

the methods of the general theory of statistical decision
functions.

Problems which are essentially classificatory arise con-
stantly in thelfield of medical diagnosis: the physician
must assign the patient to one of several categories, which
may be taken to correspond to the state of health and to the
various diseases under consideration, or to various classifi-
cations of severity of a disease. Not much work seems to
have been done toward the construction of a probabilistic
theory for diagnesis, perhaps through reluctance to treat
diagnosis as a chance phenomenon. A beginning was made re=-
cently by Neyman (1947)s who proposed a simple probabilistic

rmodel which will account for observed variation in X-ray diag-




nosis for tuberculosis. Cniang and Hodges (19,8) have con-
tinued this line of work. An interesting possibility is that
sequential diagnostic schemes might be considered proba-
bilistically. Sobel has initiated an attack on sequential
solutions of the classification problem in his doctoral dis-
sertation at Columbia University.

Recently Birnbaum and Chapman have considered a problem
which 1s essentially discriminatory. Suppose we wish}to Se-
lect individuals who have a high value of a quantity Y
which is not directly observable, but which 1s correlated with
observable quantities X,, X,, ***, Xp. Birnbaum and Chapman

1
show that if Xl’ XZ’ coey, Xp, Y  Thave a (p+l)-variate nor}
mal distribution, selection by means of an appropriate linear
combination of the X's 1is optimum in various senses. For
example, such a_"linear truncation" will maximize the con-

ditional expectation of Y among those selected, the freauency
of selection being fixed.

It is disturbing to the theoretical statistician that the
classification of an individual into a category may be preceded
by other statistical inferences, often carried out with the
same data. It seems clear that these preliminary inferences
will alter in a serious way the theoretical performance of the
discrimination itself. There may even be a whole chain of
consecutive inferences. To illustrate, suppose that a sta-
tistician is given a set of data consisting of readings on a
new seroclogical test. He-may first test the‘homogeneity of.

the data=~is there evidence that the data come frdm more than




one populationt If he decides that more than one population

is present, he must then decide how many populations there
afe. At the same time he tries to formulate a probabilistic
model for the observations, consisting of a form of proba-
bility distribution for each population. These distributions
may contain parameters, which must then be estimated. And
‘finally the sampled individuals may be classified. If it is
desirable that theory correspond to reality, then there is
need for an inelusive theory which will allow for these
mﬁltifstage decision procedures,

A beginning has been made by the Hoel-Peterson paper dis-
cussed earlier, where the estimation and classificatioﬁ.stages
are analyzed together. In another interesting paper Paulson
(19&9) considers the problem of grouping individuals into a
"superiorﬁvgroup'and an "inferior" group, or else of deciding

that all of the individuals are "neutral." This amounts to

. a tﬁe-stage procedure: first we decide whether there are one
or two populations represented; and if we decide there are
two populations, we proceed to classify the individuals into
them. Paulson proposes an intuitively reasonable procedure
and considers its probabilistic behavior in the case of normal
observations of known variance. His work‘opens up many in=-

teresting and important problems,
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CHAPTER IX

‘Risk and Minimax Idesas.

We have seen in Chapter VIII that von Mises (1945) dew
fined the optimum procedure for classification into one of -
several populations as that procedure for which the minimum
probability of correct classification is maximized. This
formulation marks the introduction of minimax ldeas into
discriminatory analysis. It is the purpose of the present
éhapter to describe some recent work in this direction.

The risk and minimax notions seem to have been intro~
duced into statistical literature by Neyman and Pearson (1933b).
These authors were concerned with testing hypotheses, but as
we have seen, hypothesis testing 1s analogous to the two-
ponulation classification problem, and the generalization to
k populations presents no difficulty. The specific ex-
tension of the risk and minimax notions to the k-~population
classification problem has been carried out by Rao (19l7c,
1948¢), Brown (19,8, 19.9), and Girshick (1949). We shall
hére rresent the notions directly in the extended form.

As was mentioned earlier, in classifying an individual
'into one of k‘populations, there are k(k-1) distinect pos-
sible errors of classification. The complexity of analysis

required for dealing with a large number of different kinds




of error is greatly resduced 1f we can in some way gauge the
seriousness of all of these errors on a common scale. For
example, we may bs able to attach an economlic value to the

losg, say w.., wilch is incurred when an individual who.ln
+d

fact belongs to I, is assigned to .. Presumably
J

Wwy4 = 0, since no error is committed when an individual be-

| longing to Tri is-assigned to Tri’ but the theory is flexible
enough to permit L +£ 0 and to allow the L% to be elther

positive or negative if this is desirable. Here, a negative

"loss" would correspond to & gain. There will be k2 of the

quantities , which may be convenlently presented as a

SR
k x k matrix:

W= 1wy, Vo Ut Wy
oy Voo 7% Woyp
Wkl wk2 XX} wkk

This matrix is known as the "loss matrix," and its specifi-
cation is not the task of the statistician but depends on the
use to be made of the classification after it has been ef~
fected. (We may remark that W corresponds to the "pay-off
matrix" of the theory of games.)

Certaln speclal cases of W are of interest. If we

equate the diagonal terms to zero, and

w w o a s w
11’ "22° ? Tkk
give the remaining terms a common (positive) value which we
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may take to be 1, the formulation reduces to that consldered
in Chepter VIII: no attentlon is palid to correct classifi-
cations, and all misclassifications are t reated alike, (von
Mises, 1945). If k = 2, and the diagonal terms are 0, we

obtain the matrix

12

w21 0

We may think of Wy and Wy, &8 giving the relative im-
portance of the two types of error in a test of a statlstl-
cal hypothesis. An interesting illustration of this situation,
applied to an Alr Force problem, has been glven by Berkson
(194L7).

It should be emphasized that, in spite of the great
flexibility of the present aspproach, 1t cannot be applled
to all problems. There are'sifuations in which the different
errors are quélitatively so different that a common scale can-~
not be constructed for them, or an asymmetry of approach may
be compelled by the conditlons of the problem; We may need
instead to adopt the typical method of hypothesis testing, and
set preassigned bounds to the probabilities of certain of the
errors. A combination of the loss and error-bound methods
may be needed for some problems.

The simplification inherent in the loss approach is at=-

tained by the introduction of the idea of riék. The risk is
simply the expected loss; that is, the average loss which may
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be expected in long=run use of the classifiéation procedurs
being considered. Recalling that any rule for classifying an
‘individual into one of k populations on the basis of certaln
observations X9 Xopene, Xp corresponds to a partitioning

of the p-dimensional sample space of the X's Into k regions

Rl’ Rz,on-’ Rk

risk which results from using R 1f I 1in fact belongs to

» let us denote this partitioning by R. The

171 is then
| k
(1) - (R) = E wy 5 P(R;|T).

If a priori probabilities Pys Post ey Py exist, there will

be an unconditionel risk

k v
r(R) = z Py ri(R).
Pl

We may reasonably take our objective to be the finding
of that classgification rule R which minimizes the risk. In
the case of a priori probabilities, this objective assumes a

Jvery simple form. We seek that partition R of the sample

space for which
k

2: Ps wij P(leTfi)
i=1 j=1

r(R)

i
M

i
DQW
m——
hqx
o
[
=
(=N
Ce
g
=
Coie
2
e
—t




is minimum. The solution of this problem is not very dif-
ferent mathematically from that dealt with by Welch (1939).
If there exist known probability density functions

f see xp) of the observable variables,vfor each of

1 (%0 |
the populations Tri’ we s8imply compute the k quantities

k
(2) cj = 2 Wij pi fi(xi""’xp)’ J = 1,2,000,k

i=1
and assign I to that population 'rj for which the corre-
sponding quantity cj is least. Intuitively, °j is pro-

portional to the & posteriori risk sustained when I 1s

agsigned to ﬂTj, and we assign I to that population for

which the a posteriori risk is least.

If no a priori probabilities are sssumed, or if nothing
is known about them, the problem is more complicated. The
individual I may belong to any one of the k populations,
and we need to consider all k of the conditional risks (1).
A natural extension of the approach of von Mises (19}45) would
be the following: find that partition R for which the maxi-
mum of the conditional risks is minimum. Such a partition is
termed é minimax partition. The adoption of this definition
of optimum corresponds to a peésimistic viewpoint: we don't
know anything about the true population of I, and should
guard ourselves agalnst the worst possibllity-~the performance
of a classification rule being judged by the risk under the

least favorable contingency.
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A simplification of the problem, which does not lead to
the specification of a unique procedﬁre, but which clarifies
the possiblilities,; 1s effected if we introduce the notions
of admissibility end the complete class. A partition R is

said to be inadmissibls 1f there exists some other partition

S- for which none of the conditional risks are greater than

they are for R:

r (R)g i = 1929'°°5k;

fes]
o
ke

and sueh that at least one of the conditional risks is ls

for 8§ than for R
r. (s} = rj(R) for some § = 1;2;¢¢¢,k.
o5
It 18 clesar thaet we should not went to use an inadmisaible

clagssificetion rule; since there is avallable an aliepnative

rule which cannot give higher risk and may give lower risk.

If & rule is not inadmissible, 1t is called admissible, and
g collection of rules which contalns all admissible rules is

called a complete class. From the risk point of view, we

need never considsr procedures which do not belong to & comm

plets cless. Tiis notion of complete class was introduced in

ing
connection with hypothesis testsby Lehmann {19,7), and was ex-

tendsd by Wald (1g@7)® The concepts of loss, risk, mirimsxz
b

procedure, edmizsibility, and compiete class play a fundament-

e

8l rcle in the modern theory of statisticsal decision functions »

developsd by Abrsham Wald (1950). Various theorems relating




to these concepts; for the spsclal case of the k-population
classification problem, may be deduced from general theorems
f Wald (1050}, or may be obtained mors simply for the specilal

o

case., We shall merely state gome of the main resulis,.

I 1billities, we can ine

Fven 1f there are no a yriorl prc
troduce them artificially, and consider the class of all
clasgification rules cobtainable frow (2) when we permit
Fys Pys CTe LD to assume 811 poesible sebts of valu@s; The
cless of rules sc obteined is hknowi as the claass of Bayes
solutiong, and thsse constitute o compleie class. Under

cortain restrictions onse can show that all of the Bayes rules

to be the Bayés

sre adunissible., The minlmax rule
ruls for which the risks are oll equzl (the so~called "conw

stant risk Bayes solution.™)

The result 0f these thesrems is to give a theodretical
solution of the op timum classification problem, provided (1)
the loss matrix W can be specifiled in 2 satisfactory way,
and {ii) the distribution of the ohszserveble variables is
completely known within each populetion. The seme comments
could be made here that were mede zboul the von Mises pe-

gsults in Chapter VIII In fact,; the present result speclal-

izes to the vom Mises result when W iz gpproprlately chosen.

there remalns the

ination of the reglons

[

. One may prcceed by trial and eryor, choaing values for
2 Tas *s P, arbitrerily, eveluaiing the corresponding

hen correcting the pf's 1o bring the rigks




closer to equality. If k = 2; it 1s usually not hard to

U

cbtain the sxplicit minimax procedure, but with k = 3

there may already be practical difficulties. There 1is need
for more work on useful approximations and shortcuts in find=
ing the minimax regions when k z 3. A start has been made
by Rao (iG}8c). The problems which arise are rather differ-
enut, according as the distributions are discrete or

i
continuoug, and both cases deserve investigation.
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